
Functional Reactive
Programming

CSC302H1, Winter 2018

Conway’s Game of Life
● Grid of “alive” and “dead” cells
● In each iteration of the game (a “tick”), cells become dead or alive based on

the previous state of the grid:
○ [underpopulation] Any live cell with <2 live neighbours dies.
○ [overpopulation] Any live cell with >3 live neighbours dies.
○ [reproduction] Any dead cell with exactly three live neighbours becomes a live cell.

2

Implementing the Game of Life
We need:
● an initial state of the world
● game logic (based on the pre-defined rules)
● a timer to produce “ticks”

We also want:
● a visual representation of the world, which gets updated when the

state of the world changes
● a way to interact with the world (change the state of cells)
● a way to pause/unpause the game

3

I/O

Implementing the Game of Life: Game logic
We would like to implement the game logic as a function, which takes a previous
game state and produces the next game state.

Moreover, we would like to treat the function as a black box: it doesn’t matter how
it is implemented; we can trust that it will correctly produce the next state if we give
it the previous state.

4

Update
function

f
Previous

state
Next
state

Implementing the Game of Life: Game logic
This means that we can produce new states forever if we
● start with the initial state, then
● keep feeding the next state back into the function

5

Update
function

f
Initial
state

Next
state

Functional Game Logic
What’s functional about this model?

It has no side effects (interaction with anything outside the model):

● To produce the next state, the game logic doesn’t use anything other than the
input it’s given (the previous state)

● The game logic doesn’t modify a global state (or any other external data); it
produces a new version of the state

no side effects stateless pure function

What is the advantage of having a functional model?
→ Testability

6

What’s the problem with this code?

var doubled = []

for (var elem of [1, 2, 3])

doubled.append(crazyDouble(elem))

7

function crazyDouble(x) {
if (new Date.getDay() == 4) // if today is Wednesday

return x*3;
else

return x*2;
}

We’d like to apply crazyDouble to all the elements of a list...

How do we test crazyDouble?
● Side effects make testing much harder - why?

● Are there cases where we need side effects?
(Pure functional languages don’t allow them...)

● Notice that the loop order matters here:
If it is Wednesday when we start looping, and it stops being Wednesday while
we are looping, then some elements will be doubled and some will be tripled -
and the result would be different if we looped in a different order!

● So we can’t apply crazyDouble to the elements in parallel, or in a different
order, for optimization...

8

Implementing the Game of Life: Triggering updates
We want to trigger an update (i.e. call our update function)...
● on each tick
● on each click
● (maybe even when other things occur, if we add other functionality?)

9

Update
function

f

Initial
state

Next
state

Tick 1

Tick 2

Click 1
Click 2

Tick 3

Click 3

Implementing the Game of Life: Triggering updates
Can we treat clicks and ticks as events, and implement event handlers?

→ What are the challenges of this implementation?
→ How would we test this implementation?

Can we create an observable object that holds clicks and ticks, subscribe to it,
and trigger an update when a click or tick occurs?
(What is the difference between event handling and observer/observable?)

10

Observer/Observable Design Pattern (301 Review)
● Common design pattern
● Appeared in GoF
● A few names:

○ Observer-Observable
○ Listener
○ Publish-Subscribe

● When something happens to object A, object B gets notified and takes an
action

● The two objects care about interfaces (eg. observer and observable), not
concrete implementations

Adapted from https://csc301-fall-2016.github.io/resources/lec6-2--2016-10-25.pdf 11

https://csc301-fall-2016.github.io/resources/lec6-2--2016-10-25.pdf

“setState” refers to
some setter method of
the subject..

12Adapted from https://csc301-fall-2016.github.io/resources/lec6-2--2016-10-25.pdf

https://csc301-fall-2016.github.io/resources/lec6-2--2016-10-25.pdf

Observer/Observable - Why?
● Simple way to decouple modules

○ An observable doesn’t need to know much about its observers
○ As long as the observers implement the observer interface (which is

usually very simple), they will get notified whenever something interesting
happens

● Fundamental building block in event-driven architecture
○ eg. GUI where a user’s mouse click raises an event, which triggers

various listeners
○ This is a standard way of decoupling GUI (presentation layer) from

business logic
13Adapted from https://csc301-fall-2016.github.io/resources/lec6-2--2016-10-25.pdf

https://csc301-fall-2016.github.io/resources/lec6-2--2016-10-25.pdf

What is reactive programming?
Wikipedia:
“...a declarative programming paradigm concerned with data streams and the propagation of change”

The Reactive Manifesto:
“Reactive Systems are:

● Responsive: The system responds in a timely manner if at all possible.
● Resilient: The system stays responsive in the face of failure.
● Elastic: The system stays responsive under varying workload.
● Message Driven: Reactive Systems rely on asynchronous message-passing to establish a boundary

between components that ensures loose coupling, isolation and location transparency.”

Introduction to Reactive Programming:

“Reactive programming is programming with asynchronous data streams.”

14

https://en.wikipedia.org/wiki/Reactive_programming
https://www.reactivemanifesto.org/
https://egghead.io/courses/introduction-to-reactive-programming

Modeling data as a stream
At the core of any system are values, which exist for some continuous period (eg.
variables, pixels, mouse position). We’ll refer to these as “behaviours”.

But computers don’t operate continuously (in real time).
And we’re not necessarily interested in behaviours at every point in time (eg. do
we always care when the user moves the mouse?).

So we want to examine certain behaviours, in a way that doesn’t depend on time.

15

up

down
Mouse button

behaviour time

Modeling data as a stream
We can describe specific conditions on a behaviour, which we’ll call “events”.

Events are discrete (they only occur at specific points in time).

We need a way to model events and have our system handle them...
16

up

down
Mouse button

behaviour time

Mouse click
events time

Modeling data as a stream
If we can connect our system to an input stream, then we can add events to the
stream as they occur, and our system can react to them as it receives them.

(Notice that our system still has no side effects!)

17

Update
function

f

Initial
state

Next
state

Mouse click
event stream

Modeling data as a stream
We don’t model time, because the timing of an event doesn’t matter to our system!

We are only interested in:
● the relative order of events, and
● the state of the system when the event occurs (which itself is only dependent

on the initial state and the previous events that have occured)

18

Update
function

f

Initial
state

Next
state

Mouse click
event stream

Modeling data as a stream
What if we have multiple kinds of events (eg. clicks and ticks)?

We can create streams of each of these events - and then we can combine them
(or create new kinds of events) using functional patterns.

19

Update
function

f

Initial
state

Next
state

Combined
event stream

Click event Tick event

Can we make our output functional too?
Let’s use React.js to create our output visualization...

20

Aside: A Quick Intro to React

● React is a JavaScript library that allows us to create HTML (and insert it into the DOM) using JS

● Part of the motivation for React was that the manipulation of DOM nodes is very costly

● React maintains a “shadow DOM” which is much cheaper to manipulate, and only makes changes
to the webpage DOM when needed

● React looks a lot like HTML, but it can contain JS code that produces HTML

● Also, unlike HTML tags, React components can have custom properties and state

Can we make our output functional too?
React components can be functions, with properties as input and HTML as output:

const Grid = ({ world }) => (
 <table>
 <tbody>
 {world.map(row => (
 <tr>
 {row.map(cell => (
 <td style={{ background: cell ? 'black' : 'white' }} />
))}
 </tr>
))}
 </tbody>
 </table>
); 21

Grid is a function that takes a 2D array world
and returns an HTML <table>

Rows from world are mapped to table rows <tr>

Cells in each row are mapped to table cells <td>

If the cell is “true” (alive), the corresponding <td> is
coloured black; otherwise, it is coloured white

Can we make our output functional too?
For exampleWorld = [[false, true], [true, false]]

we expect <Grid world={exampleWorld} /> to produce:

<table>
 <tbody>
 <tr>
 <td style='background: white' /> <td style='background: black' />
 </tr>
 <tr>
 <td style='background: black' /> <td style='background: white' />
 </tr>
 </tbody>
</table>

22

Can we make our output functional too?
● This gives us the same testability as making our game logic functional

● We can easily create test input (a world array), for which we know exactly
what output (in HTML) to expect

23

Update
function

f

Initial
state

Next
state

Event
stream

Functional
React

component

f
2

HTML

Commonly-used FP patterns/functions
map
[a, b, c, ...].map(f) → [f(a), f(b), f(c), ...]

>> [1, 2, 3].map(function (x) { return x*2; })
[2, 4, 6]

filter
[a, b, c, ...].filter(f) → [x where f(x) is true]

>> [1, 2, 3, 4].filter(function even(x) { return x % 2 == 0; })
[2, 4]

24

Commonly-used FP patterns/functions
reduce
[a, b, ..., z].reduce(f, acc) → f(z, f(... f(b, f(a, acc))))

>> [1, 2, 3].reduce(function sum(x, y) { return x + y; }, 0)
// sum(3, sum(2, sum(1, 0)))
// sum(3, sum(2, 1))
// sum(3, 3)
6

>> [2, 3, 4].reduce(function prod(x, y) { return x * y; }, 1)
// prod(4, prod(3, prod(2, 1)))
// prod(4, prod(3, 2))
// prod(4, 6)
24

25

First value of
accumulator, hence

sometimes called “seed”

Commonly-used FP patterns/functions
lambda function

● Anonymous function (not bound to a name), created at runtime
● Useful for functions that will only be referred to once, eg. as a function input

(param1, param2, ...) => returnExpr
(param1, param2, ...) => { funcBody...
 return expr; }

>> var add3 = (a, b, c) => a + b + c;

>> [1, 2, 3].map(x => x*2)
[2, 4, 6]

JavaScript

26

Look closely at this
syntax!

Recall that behaviour can be abstracted as streams of events. We can use FP
patterns to turn these event streams into new streams of new events.

Using FP patterns with event streams

27

up

down
Mouse button

behaviour time

Mouse click
event time

Grid cell click
event time15 27 34

120, 42 300, 91
This is a DOM event
object, containing
(x, y) position
information we
want...map

10, 50

cell ID

Bacon.js
Bacon.js is an FRP library for Javascript.

Using Bacon, we can create a stream from DOM click events:
Bacon.fromEvent(root, 'click')

Then, we can use map to produce a stream of function closures containing
information about the location of the click on the grid:

Bacon.fromEvent(root, 'click')
.map(event =>

world => myToggleCell(world,
 event.target.x,
 event.target.y)

); 28

This function closure takes a
world and produces a new
world, with the state of cell

(x,y) toggled

https://baconjs.github.io/

One more FP pattern: scan
Recall that reduce accumulates a list of values into a single, final value by
repeatedly applying a function.

scan does the same, but it outputs each intermediate accumulated value as well
as the final value.

[a, b, ..., z].scan(acc, f)
→ [f(a, acc), f(b, f(a, acc)), ..., f(z, f(... f(a, acc)))]

>> [1, 2, 3].scan(0, function sum(x, y) { return x + y; })
// [sum(1, 0), sum(2, sum(1, 0)), sum(3, sum(2, sum(1, 0)))]
// [1, sum(2, 1), sum(3, sum(2, 1))]
// [1, 3, sum(3, 3)]
[1, 3, 6]

29

inputStream.scan(f, acc) →

scan with event streams

30

input stream

scan stream

seed function
inputStream time

time

e1 e2 e3

f(acc, e1)

s1

f(e2, s1) f(e3, s2)

s2 s3scanStream

Using Bacon, we can create a stream from pause button click events:
Bacon.fromEvent(pauseButton, 'click')

Then, we can scan the click events to produce a stream of booleans that indicates
whether our game is currently “active” (whether ticks are occurring):

Bacon.fromEvent(pauseButton, 'click')
.scan(true, (prevState, _) => !prevState);

Each time the pause button is clicked, we change from “active” to “inactive” or
vice-versa.

Bacon/scan

31

We start out
active, so the
scan seed is

true.

Now, we can use this to filter other streams, to remove events that should only
occur when the game is active.

scan: Pause button clicks become “active” events

32

Pause button
click event

time

time

false true false

Either true or false,
toggling accumulator
from preceding event

activeStream

pause unpause pause

!prevState

activeStream applied to ticks using filter()

33

tickStream

Ticks filtered out when
the activeStream

value is false.
Active ticks
(game not
paused)

activeStream

time

time

time

false true false

TICK

34

ReactDOM.render(<Grid world={initialWorld} ... />, root);

let clickStream = Bacon.fromEvent(root, 'click').map(event =>
 world => myToggleCell(world, event.target.x, event.target.y)
);

let activeStream = Bacon.fromEvent(pauseButton, 'click').scan(
 true,
 (prevState, _) => !prevState
);

let tickStream = Bacon.interval(TICK, myUpdateWorld);
tickStream = tickStream.filter(activeStream);

let eventStream = Bacon.mergeAll(clickStream, tickStream);

eventStream
.scan(initialWorld, (oldWorld, updateWorldFunc) => updateWorldFunc(oldWorld))

 .onValue(world => ReactDOM.render(<Grid world={world} ... />, root));

ReactDOM.render(<Grid world={initialWorld} ... />, root);

35

Render the
initial state of

the world

ReactDOM.render(<Grid world={initialWorld} ... />, root);

let clickStream = Bacon.fromEvent(root, 'click').map(event =>
 world => myToggleCell(world, event.target.x, event.target.y)
);

36

Closure that toggles
the corresponding cell

ReactDOM.render(<Grid world={initialWorld} ... />, root);

let clickStream = Bacon.fromEvent(root, 'click').map(event =>
 world => myToggleCell(world, event.target.x, event.target.y)
);

let activeStream = Bacon.fromEvent(pauseButton, 'click').scan(
 true,
 (prevState, _) => !prevState
);

let tickStream = Bacon.interval(TICK, myUpdateWorld);
tickStream = tickStream.filter(activeStream);

37

What is activeStream?
What does

filter(activeStream)
create?

Closure that
produces the next
state of the world

ReactDOM.render(<Grid world={initialWorld} ... />, root);

let clickStream = Bacon.fromEvent(root, 'click').map(event =>
 world => myToggleCell(world, event.target.x, event.target.y)
);

let activeStream = Bacon.fromEvent(pauseButton, 'click').scan(
 true,
 (prevState, _) => !prevState
);

let tickStream = Bacon.interval(TICK, myUpdateWorld);
tickStream = tickStream.filter(activeStream);

let eventStream = Bacon.mergeAll(clickStream, tickStream);

eventStream
.scan(initialWorld, (oldWorld, updateWorldFunc) => updateWorldFunc(oldWorld))

 .onValue(world => ReactDOM.render(<Grid world={world} ... />, root));

38

What does this do?

Notice that:

1. We have 2 types of events that trigger a change to our world: clicks and ticks.

2. We map each of those events to a function closure:
Click: world => myToggleCell(world, event.target.x, event.target.y)
Tick: myUpdateWorld

3. The function closures have the same form, so that we can pass them to
scan, which applies them cumulatively.

(Look familiar?)
39

Update
function

f
Previous

state
Next
state

ReactDOM.render(<Grid world={initialWorld} ... />, root);

let clickStream = Bacon.fromEvent(root, 'click').map(event =>
 world => myToggleCell(world, event.target.x, event.target.y)
);

let activeStream = Bacon.fromEvent(pauseButton, 'click').scan(
 true,
 (prevState, _) => !prevState
);

let tickStream = Bacon.interval(TICK, myUpdateWorld);
tickStream = tickStream.filter(activeStream);

let eventStream = Bacon.mergeAll(clickStream, tickStream);

eventStream
.scan(initialWorld, (oldWorld, updateWorldFunc) => updateWorldFunc(oldWorld))

 .onValue(world => ReactDOM.render(<Grid world={world} ... />, root));

40

onValue calls a
function each time an
event value occurs in

the stream

41

ReactDOM.render(<Grid world={initialWorld} ... />, root);

let clickStream = Bacon.fromEvent(root, 'click').map(event =>
 world => myToggleCell(world, event.target.x, event.target.y)
);

let activeStream = Bacon.fromEvent(pauseButton, 'click').scan(
 true,
 (prevState, _) => !prevState
);

let tickStream = Bacon.interval(TICK, myUpdateWorld);
tickStream = tickStream.filter(activeStream);

let eventStream = Bacon.mergeAll(clickStream, tickStream);

eventStream
.scan(initialWorld, (oldWorld, updateWorldFunc) => updateWorldFunc(oldWorld))

 .onValue(world => ReactDOM.render(<Grid world={world} ... />, root));

Testing our implementation
For testing our implementation, we’d like to create fake event streams:

Remember: our update function has no side effects, so if we give it a single event
stream of ticks, clicks, etc. as input (and an initial state), we know exactly what
output to expect.

42

Update
function

f

Initial
state

Next
state

Event
stream

Functional
React

component

f
2

HTML

Testing our implementation
However, our implementation produces a combined input event stream by
processing separate event streams:

We’d like to mock the combined event stream and then apply processing like map.
43

Update
function

fCell
click

stream

Pause
click

stream

Tick
stream filter

+
scan

map

merge

map,
etc.

We’d like a structure like this:

so that we can easily control the relative ordering of different kinds of events.

Let’s re-write some of our code...

Testing our implementation

44

Update
function

fClick event Tick event

45

Testing our implementation
First, let’s put the “update function” into a separate function, which takes an initial
state and an event stream:

function main(initialWorld, eventStream) {
eventStream

.scan(initialWorld, (oldWorld, updateWorldFunc) =>
updateWorldFunc(oldWorld)

)
.onValue(world => ReactDOM.render(<Grid world={world} ... />, root));

}

46

Testing our implementation
We’d like eventStream to be a stream of combined events, but we still need to map those events to
update functions.
Let’s assume that each of our events contains a property called myType, which is a predefined constant. We
can rely on myType to tell us which update function we should map the event to.

function main(initialWorld, eventStream) {
eventStream.map(event => {

switch (event.myType) {
case TICK_EVENT:

return myUpdateWorld;
case CELL_CLICK_EVENT:

return world =>
myToggleCell(world, event.target.x, event.target.y);

case PAUSE_CLICK_EVENT:
return ...;

}}) ...

47

Testing our implementation
What should we map PAUSE_CLICK_EVENTs to?
→ PAUSE_CLICK_EVENTs are used for filtering TICK_EVENTs
→ They don’t correspond to updates...

function main(initialWorld, eventStream) {
eventStream

.scan({ active: true }, (prevEvent, event) =>
Object.assign(event, {

active: event.myType == PAUSE_CLICK_EVENT ?
!prevEvent.active : prevEvent.active

}))
.filter(event =>

event.myType == CELL_CLICK_EVENT ||
(event.myType == TICK_EVENT && event.active)

) ...

48

function main(initialWorld, eventStream) {
ReactDOM.render(<Grid world={initialWorld} ... />, root);

eventStream
.scan({ active: true }, (prevEvent, event) =>

Object.assign(event, {
active: event.myType == PAUSE_CLICK_EVENT ?

!prevEvent.active : prevEvent.active
}))
.filter(event => event.myType == CELL_CLICK_EVENT ||

(event.myType == TICK_EVENT && event.active))
.map(event => {

switch (event.myType) {
case TICK_EVENT:

return myUpdateWorld;
case CELL_CLICK_EVENT:

return world =>
myToggleCell(world, event.target.x, event.target.y);

}})
.scan(initialWorld, (oldWorld, updateWorldFunc) =>

updateWorldFunc(oldWorld))
.onValue(world => ReactDOM.render(<Grid world={world} ... />, root));

}

49

let clickStream = Bacon.fromEvent(root, 'click').map(event =>
 Object.assign(event, { myType: CELL_CLICK_EVENT }));

let activeStream = Bacon.fromEvent(pauseButton, 'click').map(event =>
 Object.assign(event, { myType: PAUSE_CLICK_EVENT }));

let tickStream = Bacon.interval(TICK, { myType: TICK_EVENT });

let eventStream = Bacon.mergeAll(clickStream, activeStream, tickStream);

main(..., eventStream);

Creating a “real” event stream

50

/* create an array of 10 fake tick events */
let eventArray = Array(10).fill({ myType: TICK_EVENT });

/* insert some fake pause events between the ticks */
eventArray.splice(5, { myType: PAUSE_CLICK_EVENT });
eventArray.splice(1, { myType: PAUSE_CLICK_EVENT });

/* insert some fake click events between the other events */
eventArray.splice(1, { myType: CELL_CLICK_EVENT, target: { x: 10, y: 1 } });
eventArray.splice(4, { myType: CELL_CLICK_EVENT, target: { x: 1, y: 13 } });
eventArray.splice(8, { myType: CELL_CLICK_EVENT, target: { x: 40, y: 9 } });

let eventStream = Bacon.fromArray(eventArray);

main(..., eventStream);

Creating a “fake” event stream

What if we don’t use FRP?
Instead of a stream of events...

let activeStream = Bacon.fromEvent(pauseButton, 'click').scan(
 true,
 (prevState, _) => !prevState
);

let’s store a program state (could be stored in a state container) and create an
event listener to update it:

let activeState = true;
pauseButton.addEventListener('click', () => (activeState = !activeState));

51

What if we don’t use FRP?
Again, instead of a stream of events…

let clickStream = Bacon.fromEvent(root, 'click').map(event =>
 world => myToggleCell(world, event.target.x, event.target.y)
);

let’s store a program state and create an event listener to update it:

root.addEventListener('click', event => {
worldState = myToggleCell(worldState, event.target.x, event.target.y);

 ReactDOM.render(<Grid world={worldState} ... />, root);
});

52

What if we don’t use FRP?
Instead of a stream of (regular) tick events containing an update function closure, filtered by a pause
event stream…

let tickStream = Bacon.interval(TICK, myUpdateWorld);
tickStream = tickStream.filter(activeStream);

let’s call an update function at a regular interval, which checks whether the state is active, and updates
the state:

setInterval(() => {
if (activeState) {

worldState = myUpdateWorld(worldState);
ReactDOM.render(<Grid world={worldState} ... />, root);

}
}, TICK);

53

What if we don’t use FRP?
root.addEventListener('click', event => {

worldState = myToggleCell(worldState, event.target.x, event.target.y);
 ReactDOM.render(<Grid world={worldState} ... />, root);
});

setInterval(() => {
if (activeState) {

worldState = myUpdateWorld(worldState);
ReactDOM.render(<Grid world={worldState} ... />, root);

}
}, TICK);

Why do we trigger re-renders here?

54

What are the challenges of this architecture?
● How do we create and control test inputs?

● With event handlers, event bubbling, etc. etc., how do we know when events
will be processed? How do we know their relative ordering?

● Ticks are no longer modeled the same way as clicks

● Are we back to...

55

Update
function

f

Initial
state

Next
state

Tick 1

Tick 2

Click 1
Click 2

Tick 3

Click 3

Let’s look at a different example...
On Twitter, there is a UI element that
suggests other accounts you could follow.

We can implement its core functions using FRP:
1. On startup, load accounts data from the API and

display 3 suggestions

2. On clicking "Refresh", load 3 other account
suggestions into the 3 rows

3. On clicking the 'x' button on an account row, clear
only that current account and display another

56Adapted from https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

2

3

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

“Who to follow” suggestions box implementation

57Adapted from https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

First, let’s setup event streams for clicking the 'x' on each account row, and for clicking “Refresh”:

var refreshClickStream = Bacon.fromEvent(refreshButton, 'click');
var close1ClickStream = Bacon.fromEvent(closeButton1, 'click');

Now suppose that makeRequest(suggestionApiUrl) makes a asynchronous call to the Twitter API,
requesting a single account suggestion.

Then we want to:
1. Request 3 suggestions on startup
2. Request 3 suggestions on clicking “Refresh”
3. Request 1 suggestion on clicking the 'x' button on an account row

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

“Who to follow” suggestions box implementation
/* create a click stream for the refresh button */
var refreshClickStream = Bacon.fromEvent(refreshButton, 'click');

/* create a click stream for each 'x' button */
var close1ClickStream = Bacon.fromEvent(closeButton1, 'click');

/* create 3 suggestion streams, adding a fake initial click for startup;
 makeRequest(suggestionApiUrl) makes an API request for 1 suggestion */
var suggestion1Stream = Bacon.mergeAll(refreshClickStream, close1ClickStream)

.startWith('startup click')

.flatMap(() => Bacon.fromPromise(makeRequest(suggestionApiUrl)));

/* when a suggestion value is produced, re-render the suggestion component */
suggestion1Stream.onValue(suggestion => renderSuggestion1(suggestion));

58Adapted from https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

“Who to follow” suggestions box implementation

59Adapted from https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

Now suppose that makeRequest(suggestion100ApiUrl) makes a asynchronous call to the Twitter
API, requesting 100 account suggestions.
And suppose that

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

Questions?

60

Full demos available here

https://github.com/gabriellesc/FRP-intro/

